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We consider the Kuramoto model of globally coupled phase oscillators subject to Ornstein-Uhlenbeck and
non-Gaussian colored noise and investigate the influence of noise on the order parameter of the synchroniza-
tion process. We use numerical methods to study the dependence of the threshold as well as the maximum
degree of synchronization on the correlation time and the strength of the noise, and find that the threshold of
synchronization strongly depends on the nature of the noise. It is found to be lower for both the Ornstein-
Uhlenbeck and non-Gaussian processes compared to the case of white noise. A finite correlation time also
favors the achievement of the full synchronization of the system, in contract to the white noise process, which
does not allow that. Finally, we discuss possible applications of the stochastic Kuramoto model to oscillations
taking place in biochemical systems.
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I. INTRODUCTION

Synchronization plays a key role in many processes tak-
ing place in nature, laboratories, and theoretical model sys-
tems �1–10�. Systems that show synchronized behaviors in-
clude biological clocks �1�, chemical oscillators �2�, coupled
phase oscillators �1–6�, coupled respiratory and cardiac or-
gans �7�, and coupled map lattices �8–10�. In the present
paper, we will study the synchronization behavior of globally
coupled phase oscillators subject to Ornstein-Uhlenbeck
�OU� �11,12� and non-Gaussian colored noise �13–15�.

The model first introduced by Kuramoto �2� is one of the
basic models that describes the synchronization process
when initially independent oscillators begin to move coher-
ently. It has been thoroughly studied and successfully applied
in several systems which were modeled by an ensemble of
coupled phase oscillators �6�. The Kuramoto model subject
to a noise source and known as the stochastic Kuramoto
model has also been subject to intensive investigations �4–6�.
Most research was carried out for white noise. This Gaussian
noise with zero correlation time shifts the threshold of syn-
chronization to a higher value of the coupling constant. That
behavior is rather expected as a noise usually increases the
threshold of transition to an ordered phase. Also, white noise
decreases the maximum degree of synchronization, thus not
allowing the system to achieve full synchronization. We

wonder how the Kuramoto model will behave in the case of
other noise sources.

In this paper, we consider the Kuramoto model of globally
coupled phase oscillators �each oscillator couples with all
other oscillators� subject to OU noise, that is, a Gaussian
process with finite correlation time, and non-Gaussian noise
�13�. We are motivated by observations that the nature of
noise in, e.g., living systems is not always thermal, that is,
described by the Gaussian white noise process, but rather
non-Gaussian �14�.

The focus in our study is on the influence of noise on the
synchronization process. We first review the known facts
about the deterministic Kuramoto model as well as about the
Kuramoto model with white noise. Then we consider the
stochastic Kuramoto model subject to the OU noise process.
The model of globally coupled phase oscillators with OU
noise was previously considered in �16�, where the effective
frequency was obtained. Our goal is to study the dependence
of the threshold and the degree of synchronization on the
strength of the noise and the correlation time. Then we will
turn to a non-Gaussian noise process and will find its effects
on the synchronization of the phase oscillators. Finally, we
outline a possible application of this and related models to
oscillations taking place in biochemical systems, e.g., circa-
dian clocks.

II. STOCHASTIC KURAMOTO MODEL

We begin with an introduction to the deterministic Kura-
moto model �2�, which describes N coupled phase oscillators
with dynamics governed by the equations
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d�i

dt
= �i +

�

N
�
j=1

N

sin�� j − �i� , �1�

where �i is the phase of the ith oscillator having frequency
�i, and � is the coupling constant.

The quantity of interest is

Z = �ei� =
1

N
�
j=1

N

ei�j , �2�

which would be the order parameter to measure the extent of
synchronization in the system of N phase oscillators. Its
magnitude � determines the degree of synchronization. It can
be seen that when all the oscillators have the same phase the
quantity equals one ��=1�, which corresponds to full syn-
chronization. The degree of synchronization is equal to zero
��=0� when all the oscillators are independent and have dif-
ferent phases. � defines the average phase of the oscillators.
Using �, we can rewrite Eq. �1� as

d�i

dt
= �i + �� sin�� − �i� . �3�

Equations �2� and �3� and �3� form a self-consistent set of
equations to solve. For the initial distribution of frequencies
we choose the Lorentzian distribution

g�w� =
1

�

�

�� − �̄�2 + �2 . �4�

In the following we will take the average frequency as zero,
�̄=0. Having the above distribution for the frequencies helps
to find from Eqs. �2� and �3� an analytical expression for the
stationary value of the synchronization degree �4�,

� =�1 −
2�

�
. �5�

The transition to synchronization from the incoherent state
with �=0 occurs at the critical value �c=2�, and the degree
of synchronization asymptotically reaches its maximal value
�m=1, the full synchronization of the ensemble of phase
oscillators.

Let us now consider the stochastic Kuramoto model
driven by noise 	i�t�,

d�i

dt
= �i +

�

N
�
j=1

N

sin�� j − �i� + 	i�t� , �6�

where the independent noise processes are governed by
�13,15�

d	i

dt
= −

1




d

d	i
Up�	i� +

�D



�i�t� . �7�

The potential function is

Up�	� = �D



�p − 1��ln�1 + ��p − 1�	2/2�

with �=
 /D. ��t� is the Gaussian white noise process de-
fined via 	��t���t��
=2�t− t�� and 	��t�
=0. D and 
 define

the intensity and the correlation time of the noise process.
The form of the noise 	 allows us to control the deviation
from the Gaussian behavior by changing a single parameter
p. For p=1, Eq. �7� becomes

d	i

dt
= −

	i



+

�D



�i�t� , �8�

which is a well-known time evolution equation for the OU
noise process �11–13,15�.

The correlation function of the OU noise �11,12� is given
by

		�t�	�0�
 =
D



e−t/
. �9�

Thus 
 is the correlation time of the OU noise. To present the
properties of the non-Gaussian noise we have plotted the
two-time correlation function vs time in Fig. 1 via a numeri-
cal simulation. The curve for non-Gaussian noise �p�1� is
fitted well by a biexponential decaying function �dotted
curve� with correlation times 
=31 and 1, respectively, for
p=1.5. Figure 1 shows that the effective correlation time and
the noise strength for p�1 are larger than those for p=1.0.
Stationary properties of the noise 	 for p�1, including the
time correlation function, have been studied in �17� and here
we summarize the main results. The stationary probability
distribution of 	 is

P�	� =
1

Zp
�1 + ��p − 1�

	2

2
�−1/�p−1�

, �10�

where Zp is the normalization factor given by

Zp =� �

��p − 1�
�1„1/�p − 1� − 1/2…

�1„1/�p − 1�…
�11�

with �1 being the Gamma function. This distribution can be
normalized only for p�3. Since P�	� is an even function of
	, the first moment 		
 is always equal to zero, and the
second moment, given by
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FIG. 1. Two-time correlation function vs t of both Gaussian and
non-Gaussian noises for parameters 
=1.0 and D=0.5.
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		p
2
 =

2D


�5 − 3p�
, �12�

is well defined only for p�5/3. This shows that for a given
external noise strength D and noise correlation time 
 the
variance of the non-Gaussian is higher than that of the
Gaussian noise for p�1, as we have numerically shown
above.

Now we check whether the above distribution function
reduces to the Gaussian form for p=1. In this limit the term
in large parentheses of Eq. �10� can be written as 1+��p
−1�	2 /2=exp���p−1�	2 /2� and therefore Eq. �10� becomes

P�	� =
1

Z1
exp�− �	2/2� , �13�

with Z1=�� /�. Thus it is the stationary distribution function
of colored Gaussian noise whose time evolution is given by
Eq. �9�. Finally, for p�1, the distribution function for 	 has
a cutoff and it is defined only for �	 � �	c��2D /
�1− p�. As
the distribution function is not defined for arbitrary values of
	, we are not interested in exploring the limit p�1 in the
present paper.

The case of white noise corresponds to p=1 and 
=0
�-correlated Gaussian process�. For this case it can be
shown, beginning with the Fokker-Planck equation for the
phase variables �i, that one can derive an equation for the
order parameter � �18� from which the critical value of the
interaction parameter �c can be obtained. For the general
case of an arbitrary distribution of frequencies g���, the
threshold value in the limit N→� can be obtained via

�c =
2

 d� g���D/�D2 + �2�
, �14�

which becomes �c=2/�g�0� when noise is absent �D=0�.
For the Lorentzian distribution of frequencies �4� the values
of the critical coupling are �c=2� for the deterministic and
�c=2��+D� for the white noise cases �18�.

In order to understand the thermodynamic limit in terms
of numbers of coupled phase oscillators, we have plotted the
critical coupling strength vs the number of oscillators in Fig.
2. It shows that the system with N=5000 oscillators has the
same behavior as the thermodynamic system. Thus we per-
formed our simulations with N=5000, which gives results as
in the thermodynamic limit. More evidence for this statement
will be presented below.

III. RESULTS

It is difficult to deal with Eqs. �6� and �7� analytically as
they involve both nonlinearity and finite-correlation-time
noise. Instead we have solved the stochastic differential
equations �6� and �7� simultaneously using Heun’s method, a
stochastic version of the Euler method which reduces to the
second-order Runge-Kutta method in the absence of noise
�19�.

In Fig. 3 we have plotted the average value of the degree
of synchronization 	�
 versus the coupling strength � for the

cases of no noise �D=0�, white noise �D=5.0, 
=0.0�, and
colored Gaussian noise �D=5.0, 
=0.5� as solid, dashed, and
dotted lines, respectively. In the presence of noise it is diffi-
cult to make the system synchronized because of the phase
diffusion. As a result of that, the synchronization phase tran-
sition appears at a relatively higher value of coupling
strength in the presence of noise �dotted and dashed curves�
compared to the deterministic case �solid curve�. Not only is
the critical coupling strength affected, but also the maximum
degree of synchronization is reduced in the presence of
noise. The influence of white noise does not allow for the full
synchronization of oscillators �dashed curve�. However, the
dotted curve shows that the noise correlation plays a con-
structive role in the synchronization phenomenon. Even at
very small but finite correlation times, the degree of synchro-
nization reaches a value of full synchronization similar to
that in the deterministic case, demonstrating a low coupling
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FIG. 2. Critical value of the coupling strength �c vs the number
of coupled oscillators for �=0.5 and D=0.0.
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FIG. 3. Average magnitude of the order parameter 	�
 vs the
coupling strength � both in the presence �dashed and dotted curves�
and in the absence �solid curves� of noise. The width of the Lorent-
zian distribution for initial frequencies is �=0.5. In the inset, same
plot for colored Gaussian and non-Gaussian noise, respectively. The
parameter set for the inset is 
=0.5, D=15.0, and �=0.5.
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strength and high degree of synchronization. This can be
explained in the following way. The time correlations of the
colored noise develop intrinsic correlations among the phase
oscillators that lead to a high degree of synchronization at
small coupling strengths.

Now we try to find out how these quantities are affected if
the colored noise becomes non-Gaussian. We have plotted
	�
 versus � in the inset of Fig. 3 for both colored Gaussian
and non-Gaussian noise. The curves show that the synchro-
nization for the non-Gaussian noise occurs at a higher thresh-
old compared to that for Gaussian OU noise. This happens
because of the higher value of the second moment �see Eq.
�12� and Fig. 1� of the non-Gaussian noise than that of the
Gaussian noise.

In the next step, we compare the variation of critical cou-
pling strength �c with the noise strength D for colored noise
to the known linear relation �c=2��+D� for white noise, and
plot �c versus the noise strength D in Fig. 4; �c is determined
numerically from the plot of 	�
 vs � as in Fig. 3. The value
of the � at which the phase transition takes place corresponds
to the value of the critical coupling strength �c. The linear
plot in Fig. 4 for white noise follows the relation �c=2��
+D� for a thermodynamic system with N→� and implies
that our present numerical calculations at N=5000 represent
very well the results in the thermodynamic limit N→�.
However, Fig. 4 shows that for both colored Gaussian and
non-Gaussian noise the critical coupling �c increases very
slowly compared to the case of white noise. This is a signa-
ture of intrinsic correlations developed among the phases due
to the finite correlation time of the noise.

The same mechanism explains the decay of the average
maximum degree of synchronization 	�
m with the increase
of noise strength D as plotted in Fig. 5. The figure shows that
the decay rate of the white noise �
=0, p=1.0� is larger than
those of the colored Gaussian �
=0.5, p=1.0� and colored
non-Gaussian �
=0.5, p=1.5� noise. For the colored non-
Gaussian noise the decay rate is higher compared to the col-
ored Gaussian noise as the variance is higher for the former
case than for the latter.

To understand the dependence of the critical coupling
strength �c and the average maximum degree of synchroni-

zation 	�
m on the correlation time 
 of colored noises, we
compute the quantities and present them in Fig. 6 and its
inset, respectively. The figure shows that for both the Gauss-
ian and non-Gaussian noise the critical coupling parameter �c
decays biexponentially �the dotted curves are due to biexpo-
nentially decaying fitting� with increase of the noise correla-
tion time 
. It differs from Fig. 1 in Ref. �20�, where the
variance was kept fixed and the critical coupling strength
decreases due to increase of damping in the time evolution
equation of the noise. But in Fig. 6 the variance decreases
with increase of noise correlation time. Therefore, as the cor-
relation time of the noise increases, the phase diffusion is
reduced and intrinsic correlations among the phases develop
strongly. As a result, the value of the synchronization thresh-
old �c decreases with increase of the correlation time 
. The
rate of decrease is very high at small 
’s, since in this limit
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FIG. 4. Critical value of the coupling strength �c vs the noise
strength D for white �
=0, p=1�, OU �
=0.5, p=1�, and non-
Gaussian �
=0.5, p=1.5� noise sources. �=0.5.
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FIG. 5. Maximum value of the degree of synchronization 	�
m

vs the noise strength D for white �
=0, p=1�, OU �
=0.5, p=1�,
and non-Gaussian �
=0.5, p=1.5� noise sources with �=0.5 for all
cases.
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FIG. 6. Critical value of coupling strength �c vs the noise cor-
relation time 
 for OU �p=1� and non-Gaussian �p=1.5� noise. The
other parameters are �=0.5 and D=5.0. In the inset the maximum
value of the degree of synchronization 	�
m vs the correlation time

 is presented for OU �p=1� and non-Gaussian �p=1.5� noise. The
parameters are the same as in the main figure. The dotted curves
show a biexponential fit.
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the noise strength has the dominating role in the dynamics
and the correlation effect tries to overcome it. However, at
small correlation times the large value of the critical cou-
pling strength for the non-Gaussian noise compared to the
Gaussian case is due to the very large value of its second
moment �see Eq. �12� and Fig. 1� compared to the Gaussian
noise, and thus the noise correlations have little effect on the
synchronization. But at large values of 
 the effective corre-
lations of the non-Gaussian noise become very high �see Fig.
1� compared to those of the Gaussian noise, such that the
effect of the excess noise strength is nullified and the critical
coupling parameter �c becomes the same for both types of
noise. The above explanations suggest that the degree of
maximum synchronization should increase as the noise cor-
relation time grows. One can also expect that the rate of
increase is higher at small correlation times compared to
large values of 
. The results of our numerical simulations
agree with this, as presented in the inset of Fig. 6.

Finally, we demonstrate the variation of the synchroniza-
tion threshold �c with the parameter p in Fig. 7. It shows that
when p is close to 1, which corresponds to Gaussian pro-
cesses, then the critical coupling strength increases at a
higher rate than at large values of p. This result can be un-
derstood in the following way. As the noise deviates from
Gaussian behavior, the effective noise strength and correla-
tion time increase and in the limit of p→1 the former domi-
nates over the latter. Thus the rate of increase of phase dif-
fusion decreases with increase of p in the interplay of noise
strength and the correlation time. Meanwhile, the critical
coupling �c grows at a slower rate as the noise deviates more
from Gaussian. However, the maximum degree of synchro-
nization decreases more or less at the same rate as p grows.
It is displayed in the inset of Fig. 7.

IV. SUMMARY AND DISCUSSION

In summary, we have considered the stochastic Kuramoto
model of globally coupled phase oscillators subject to both
Gaussian and non-Gaussian noise. The main focus was on
the influence of noise on the synchronization phenomenon.
The dependence of the critical value of the coupling strength
�c on the strength of noise D and correlation time 
 was
thoroughly studied. A remarkable result is the decrease of �c
in the case of the OU process compared to the case of the
white noise process. That occurs due to the finite-time cor-
relations of the noise, which develop intrinsic correlations
between the phases. Also, the threshold tends to decrease
with increase of the correlation time. The comparison be-
tween the Gaussian OU process and a non-Gaussian process
�which reduces to the OU noise for a particular value of a
parameter that controls the deviation from the Gaussian be-
havior� showed that the OU noise source advances the syn-
chronization compared to the non-Gaussian noise. This is
caused by the fact that the variance is higher for the non-
Gaussian case �Eq. �12��.

We have also investigated the dependence of the maximal
degree of synchronization 	�
m on the characteristics of the
noise sources. As expected, it does decrease with increase of
the noise strength D. However, we have obtained the result
that both the OU and the non-Gaussian types of noise do
allow the system to reach full synchronization, in contrast to
the case of white noise. We have also revealed that higher
correlation times favor higher degrees of maximal synchro-
nization. This can be explained in the same manner as the
influence of the correlation time of the noise process.

It should be pointed out that many processes taking place
in nature may involve noise with non-Gaussian properties, as
was shown in �14�. That is why investigation of models that
describe such systems with non-Gaussian noise should at-
tract more attention. In our present attempt, we compared the
impact of a non-Gaussian noise on the nonlinear behavior of
a system of coupled phase oscillators with the influence of
white noise, and came to the conclusion that observations of
those deviations from the behavior predicted by white noise
may serve as a signature for the nature of the noise source.

We have also found that the case of the OU process, that
is a Gaussian noise with finite correlation time, qualitatively
differs from the case of white noise. It is obviously more
realistic for the description of real complex systems and ap-
pears to favor critical phenomena such as the synchroniza-
tion process. We came to this conclusion due to the following
facts. Complex systems in the real world are associated with
a thermal environment �TE� as well as a nonthermal environ-
ment �NTE�. By the TE, we mean the medium in which
system is immersed. If the TE is continuous then there is a
cutoff in the frequency of the bath vibrational modes and it
leads to �colored� noise of finite correlation time �21�. An-
other strong origin of the color noise is the NTE as a result of
complex nonlinear dynamics in the environmental degrees of
freedom. Because of nonlinear dynamics, the noise from the
NTE might be non-Gaussian in character. Our present study
shows that experimentalists can prove the presence of col-
ored noise with finite correlation time if measurements show
that, e.g., a system achieves full synchronization, which is
not possible for a system with white noise.
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FIG. 7. Critical value of the coupling strength �c vs the param-
eter p that characterizes the deviation from Gaussian behavior. The
parameters are �=0.5, 
=0.5, and D=7.5. In the inset the maximum
degree of synchronization 	�
m is plotted vs p for the same set of
parameters as in the main figure.
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Very recently, the collective synchronization in a popula-
tion of coupled identical phase oscillators with drifting fre-
quencies was studied in the biological context in �20�, moti-
vated by recent experiments �22�. The drift of the frequencies
was modeled as a process subject to OU noise. The model
was applied to describe cell-autonomous and self-sustained
molecular oscillators, which drive circadian behavior and
physiology in mammals �23�. Their model was shown to
combine essential aspects of circadian clocks such as the
stability of the limit cycle, fluctuations, and intercellular cou-
pling. The stochastic Kuramoto model considered in our pa-

per can be readily extended to describe circadian clocks un-
der the influence of non-Gaussian noise.
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